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A. Annovi,20 J. Antos,15 G. Apollinari,18 A. Apresyan,49 T. Arisawa,58 A. Artikov,16 W. Ashmanskas,18 A. Attal,4

A. Aurisano,54 F. Azfar,43 W. Badgett,18 A. Barbaro-Galtieri,29 V.E. Barnes,49 B.A. Barnett,26 P. Barriabb,47

V. Bartsch,31 G. Bauer,33 P.-H. Beauchemin,34 F. Bedeschi,47 D. Beecher,31 S. Behari,26 G. Bellettiniaa,47

J. Bellinger,60 D. Benjamin,17 A. Beretvas,18 J. Beringer,29 A. Bhatti,51 M. Binkley,18 D. Biselloz,44 I. Bizjakff ,31

R.E. Blair,2 C. Blocker,7 B. Blumenfeld,26 A. Bocci,17 A. Bodek,50 V. Boisvert,50 G. Bolla,49 D. Bortoletto,49

J. Boudreau,48 A. Boveia,11 B. Braua,11 A. Bridgeman,25 L. Brigliadoriy,6 C. Bromberg,36 E. Brubaker,14

J. Budagov,16 H.S. Budd,50 S. Budd,25 S. Burke,18 K. Burkett,18 G. Busettoz,44 P. Bussey,22 A. Buzatu,34

K. L. Byrum,2 S. Cabrerav,17 C. Calancha,32 M. Campanelli,36 M. Campbell,35 F. Canelli14,18 A. Canepa,46

B. Carls,25 D. Carlsmith,60 R. Carosi,47 S. Carrillon,19 S. Carron,34 B. Casal,12 M. Casarsa,18 A. Castroy,6

P. Catastinibb,47 D. Cauzee,55 V. Cavalierebb,47 M. Cavalli-Sforza,4 A. Cerri,29 L. Cerritop,31 S.H. Chang,28

Y.C. Chen,1 M. Chertok,8 G. Chiarelli,47 G. Chlachidze,18 F. Chlebana,18 K. Cho,28 D. Chokheli,16

J.P. Chou,23 G. Choudalakis,33 S.H. Chuang,53 K. Chungo,18 W.H. Chung,60 Y.S. Chung,50 T. Chwalek,27

C.I. Ciobanu,45 M.A. Cioccibb,47 A. Clark,21 D. Clark,7 G. Compostella,44 M.E. Convery,18 J. Conway,8

M. Cordelli,20 G. Cortianaz,44 C.A. Cox,8 D.J. Cox,8 F. Crescioliaa,47 C. Cuenca Almenarv,8 J. Cuevast,12

R. Culbertson,18 J.C. Cully,35 D. Dagenhart,18 M. Datta,18 T. Davies,22 P. de Barbaro,50 S. De Cecco,52

A. Deisher,29 G. De Lorenzo,4 M. Dell’Orsoaa,47 C. Deluca,4 L. Demortier,51 J. Deng,17 M. Deninno,6

P.F. Derwent,18 A. Di Cantoaa,47 G.P. di Giovanni,45 C. Dionisidd,52 B. Di Ruzzaee,55 J.R. Dittmann,5

M. D’Onofrio,4 S. Donatiaa,47 P. Dong,9 J. Donini,44 T. Dorigo,44 S. Dube,53 J. Efron,40 A. Elagin,54 R. Erbacher,8

D. Errede,25 S. Errede,25 R. Eusebi,18 H.C. Fang,29 S. Farrington,43 W.T. Fedorko,14 R.G. Feild,61 M. Feindt,27

J.P. Fernandez,32 C. Ferrazzacc,47 R. Field,19 G. Flanagan,49 R. Forrest,8 M.J. Frank,5 M. Franklin,23

J.C. Freeman,18 I. Furic,19 M. Gallinaro,52 J. Galyardt,13 F. Garberson,11 J.E. Garcia,21 A.F. Garfinkel,49

P. Garosibb,47 K. Genser,18 H. Gerberich,25 D. Gerdes,35 A. Gessler,27 S. Giagudd,52 V. Giakoumopoulou,3

P. Giannetti,47 K. Gibson,48 J.L. Gimmell,50 C.M. Ginsburg,18 N. Giokaris,3 M. Giordaniee,55 P. Giromini,20

M. Giunta,47 G. Giurgiu,26 V. Glagolev,16 D. Glenzinski,18 M. Gold,38 N. Goldschmidt,19 A. Golossanov,18

G. Gomez,12 G. Gomez-Ceballos,33 M. Goncharov,33 O. González,32 I. Gorelov,38 A.T. Goshaw,17 K. Goulianos,51
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ddSapienza Università di Roma, I-00185 Roma, Italy
53Rutgers University, Piscataway, New Jersey 08855

54Texas A&M University, College Station, Texas 77843
55Istituto Nazionale di Fisica Nucleare Trieste/Udine,

I-34100 Trieste, eeUniversity of Trieste/Udine, I-33100 Udine, Italy
56University of Tsukuba, Tsukuba, Ibaraki 305, Japan

57Tufts University, Medford, Massachusetts 02155
58Waseda University, Tokyo 169, Japan

59Wayne State University, Detroit, Michigan 48201
60University of Wisconsin, Madison, Wisconsin 53706

61Yale University, New Haven, Connecticut 06520

We present a search for associated production of the standard model (SM) Higgs boson and a
Z boson where the Z boson decays to two leptons and the Higgs decays to a pair of b quarks in
pp̄ collisions at the Fermilab Tevatron. We use event probabilities based on SM matrix elements
to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample
corresponding to an integrated luminosity of 2.7 fb−1 we see no evidence of a Higgs boson with a
mass between 100 GeV/c2 and 150 GeV/c2. We set 95% confidence level (C.L.) upper limits on the
cross-section for ZH production as a function of the Higgs boson mass mH ; the limit is 8.2 times
the SM prediction at mH = 115 GeV/c2.
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In the standard model (SM), the Higgs mechanism is
responsible for the observed breaking of the SU(2)L ⊗
U(1) symmetry [1, 2], yet the Higgs boson remains the
only SM particle that has not been directly observed.
Direct searches have set a lower limit on the SM Higgs
boson mass mH of 114.4 GeV/c2 at 95% C.L. [3], while
precision electroweak measurements indirectly constrain
its mass to mH = 76+33

−24 GeV/c2 [4]. At hadron colliders
the dominant production process for the SM Higgs boson
is gg → H while its decays are dominated by H → bb̄ for
mH < 140 GeV/c2. However, the process gg → H → bb̄
is dwarfed by multi-jet background, necessitating the
search for Higgs bosons produced in association with a W
or Z boson that decays leptonically. This article reports
a search for the process pp̄ → ZH → `−`+bb̄ (` = e, µ) in
data with an integrated luminosity of 2.7 fb−1 collected
with the CDF II detector, nearly 3 times that of the pre-
viously reported analysis [5]. The study of Higgs boson
production in association with a W/Z gauge boson for
low Higgs boson masses is further motivated by the fact
that the signal to background ratio is more favorable at
the Tevatron compared to the Large Hadron Collider.

For the first time in a ZH → `−`+bb̄ search, we
utilize a method based on leading-order matrix ele-
ment calculations [6–8] convoluted with detector reso-
lution functions [9] that form per-event likelihoods. This
method, pioneered for use in top quark mass measure-
ments [10, 11], has been recently used in Higgs boson
searches in other decay channels [12] by forming a dis-
criminating per-event variable. We extend the technique
by expressing the event likelihoods as a function of the
ZH signal fraction and maximizing the joint likelihood
for the data sample with respect to the signal fraction.
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The CDF II detector [13, 14] is an azimuthally
and forward-backward symmetric apparatus designed to
study pp collisions at the Fermilab Tevatron. It con-
sists of a magnetic spectrometer surrounded by calorime-
ters and muon chambers. The charged particle tracking
system, consisting of a silicon detector and drift cham-
ber, is immersed in a 1.4 T magnetic field parallel to
the p and p beams. Calorimeters segmented in η and
φ surround the tracking system and measure the energy
of particles detected within them. The electromagnetic
and hadronic calorimeters are lead-scintillator and iron-
scintillator sampling devices, respectively. Drift cham-
bers located outside the central hadron calorimeters de-
tect muons. The data used in this analysis are col-
lected with an online selection that requires events to
have a lepton with ET > 18 GeV (for an electron) or
pT > 18 GeV/c (for a muon) [14].

The event selection used in this analysis closely follows
that in Ref. [5]. Candidate events are required to have
a pair of oppositely charged electrons or muons with in-
variant mass 76 < m`` < 106 GeV/c2. Candidate events
are also required to have one jet with ET > 25 GeV
and at least one additional jet with ET > 15 GeV, both
within |η| < 2.0. All jet energies are corrected for non-
uniformities in calorimeter response, effects from multiple
pp̄ interactions and for the hadronic energy scale of the
calorimeter [15]. Candidate events are required to have
at least one jet with an associated displaced secondary
vertex [16] (“b-tags”, reconstructed using tracks with hits
in the silicon detector), thus enriching the b-quark con-
tent of the sample.

The backgrounds for this analysis are dominated by
events with real Z bosons with additional contributions
from tt̄ and events where an object, such as a jet, is
mis-identified as a lepton. We model the backgrounds
with events generated with leading-order event genera-
tors, normalized to next-to-leading order cross-sections
and simulated with a geant-based description of the
CDF II detector [9]. Z+light-flavor jet contributions are
modeled with the alpgen [17] simulation code matched
with pythia in the MLM scheme [17] for the hadroniza-
tion and fragmentation. Heavy flavor contributions from
Z + bb̄ and Z + cc̄ are modeled separately with alp-
gen and combined with the light-flavor jet samples. The
WZ, ZZ and tt̄ processes are modeled using pythia [18].
Events where a jet is mis-identified as a charged lep-
ton are modeled using jet-enriched data samples [5, 19].
We model the kinematics of ZH → `+`−bb̄ events using
pythia for mH ranging from 100 GeV/c2 to 150 GeV/c2.
The signal and background contributions expected in
2.7 fb−1 and the number of observed events are given
in Table I.

We denote the ZH signal probability by PZH(xi|mH)
where mH is a parameter and xi represents the collection
of the measured 4-vector momenta of the two selected
leptons, the two selected jets, and the two components
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TABLE I: Expected and observed numbers of events with
1 or 2 b-tagged jets in 2.7 fb−1 of data. The ZH expecta-
tion is shown for mH = 115 GeV/c2 assuming the produc-
tion cross section at

√
s = 1.96 TeV for qq̄ → Z∗ → ZH

to be 1.04 pb [20] and the branching ratio B(H → bb̄) to be
73% [21].

Source 1 tag ≥ 2 tag
Z → `+`−+light partons 129.6± 24.0 5.5± 0.9
Z → `+`− + bb̄, cc̄ 107.2± 14.0 19.5± 3.4
ZZ, WZ 11.6± 1.3 2.9± 0.4
tt̄ 13.9± 2.0 7.7± 1.1
Mis-ID lepton 15.9± 6.5 0.4± 0.2
ZH 1.3± 0.2 0.7± 0.1
Total expected 279.5± 28.6 36.3± 3.7
Data 258 32

of the missing transverse momentum, in a given event
i. Similarly we denote the background probability as
Pb(xi). The per-event likelihood as a function of the
signal fraction s for a given event i is

L(s,xi|mH) = sPZH(xi|mH) + (1− s)Pb(xi). (1)

We evaluate PZH and Pb by convoluting the leading-
order matrix elements for the process with detector reso-
lution functions and integrating over unmeasured quan-
tities. Thus, PZH is a probability density in xi and can
be expressed as

PZH(xi|mH) =
1

σ(mH)

∫
dΦ|MZH(q, p;mH)|2

×
∏
j

[W (pj ,xi)]fPDF (q1)fPDF (q2)
(2)

where MZH is the leading-order matrix element for the
process qq̄ → ZH → `+`−bb̄ evaluated for a pair of in-
coming partons q and outgoing particles p, W (pj ,xi) are
transfer functions [22] linking the outgoing particle mo-
menta pj to measured quantities xi and the fPDF are
parton density functions of the incoming partons. The
factor 1/σ(mH) ensures that the probability density sat-
isfies the normalization condition,

∫
dxii PZH(xi|mH) =

1.
The sample likelihood L is obtained by taking the

product over all events i in the sample

L(s|mH) =
∏

i

L(s,xi|mH). (3)

We enhance our statistical sensitivity by exploiting the
expected difference in the rate of signal and background
events with two b-tagged jets. We replace PZH(xi|mH)
by PZH(xi, n|mH) ≡ PZH(xi|mH) · PZH(n|mH) and
Pb(xi) by Pb(xi, n) ≡ Pb(xi) · Pb(n), where PZH(n|mH)

)/L]b-PZH[(P-1tan
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FIG. 1: The distribution of tan−1D where the discriminant
D = (PZH − Pb)/L for expected backgrounds and data for
events with one (left) and two (right) b-tags. The expected
signal (×10) is overlaid.

TABLE II: Expected single- and double-tag probabilities,
P (n = 1) and P (n ≥ 2), for signal and background events
passing our selection. Z → `+`−+jets includes jets from both
light and heavy quarks.

Source P (n = 1) P (n ≥ 2)
Z → `+`−+jets 0.91 0.09
WZ, ZZ 0.80 0.20
tt̄ 0.74 0.26
ZH (mH = 100 GeV/c2) 0.67 0.33
ZH (mH = 125 GeV/c2) 0.65 0.35
ZH (mH = 150 GeV/c2) 0.63 0.37

[Pb(n)] denotes the probability of tagging signal [back-
ground] events with n tags. Table II shows the expected
tagging rates for simulated signal and background event
samples.

The measured signal fraction Smeas is the value of s
which maximizes L(s|mH). Using Eq. (1), we can de-
fine a per-event discriminant Di≡ ∂ lnL/∂s = (PZH −
Pb)/L which increases (decreases) for more signal-like
(background-like) events. The maximum-likelihood esti-
mator for the measured signal fraction Smeas corresponds
to ΣiDi|s=Smeas = 0. The distribution of tan−1Di(s =
Smeas) for simulated events and data is shown in Fig. 1.

The dominant backgrounds in our data sample are due
to Z+jets, tt̄ and ZZ processes, in the expected propor-
tions denoted by λZjj , λtt̄ and λZZ respectively. The
background probability in Eq. (1) is given by

Pb(xi, n) = λZjjPZjj(xi, n)+λtt̄Ptt̄(xi, n)+λZZPZZ(xi, n),
(4)

where PZjj(xi, n), Ptt̄(xi, n) and PZZ(xi, n) are the re-
spective probability densities (normalized to unit inte-
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gral) for the Z+jets, tt̄, and ZZ background processes
with n tags. Normalization of Pb is ensured by requiring
λZjj + λtt̄ + λZZ = 1.

We construct confidence intervals [23] for the test
statistic R = L(Smeas|Strue)/L(Smeas|Sbest

true) by perform-
ing simulated experiments with the expected proportions
of background and varying the amounts of signal, such
that Strue is the true (input) signal fraction in the simu-
lated experiment. Sbest

true is the input signal fraction that
has the highest likelihood for a given measured signal
fraction, Smeas. L(Smeas|Strue) is given by Eq. (3) for
the simulated experiment with the chosen value of Strue

and mH . Since we are measuring the fractional signal
content in the data sample, the number of events in each
simulated experiment is held fixed at the value of 290
events observed in the data.

The methodology from Ref. [23] is used to construct
confidence intervals in Smeas for each chosen value of
Strue and mH . This method removes any bias resulting
from imperfections in our modeling by relating Smeas to
Strue. The confidence intervals in Smeas obtained for
mH = 115 GeV/c2 and 0 ≤ Strue ≤ 0.25 are shown in
Fig. 2. For a given value of Smeas obtained from the
data (or from an independent simulated experiment to
evaluate the a priori expectation), we extract the range
of Strue for which the confidence intervals contain this
value of Smeas. A feature of this method is that the
resulting range of Strue can be quoted as an upper limit
on Strue (if the lower bound is zero) or as a two-sided
measurement of Strue. As Fig. 2 shows, we obtain an
upper limit on Strue given the data, which we convert
to the equivalent upper limit on the signal cross section.
This procedure is repeated for the range of Higgs boson
masses 100 ≤ mH ≤ 150 GeV/c2.

We evaluate systematic uncertainties by varying pro-
cess rates and kinematic distributions in our simulated
experiments. We apply a rate uncertainty of 40% for Z
boson events and of 20% for diboson and tt̄ events. The
uncertainty on the rate of heavy flavor production in as-
sociation with a gauge boson is based on comparisons of
data with theoretical predictions [19]. The uncertainty
on the diboson and tt̄ contribution includes the uncer-
tainties in the cross sections, selection efficiencies and
the top quark mass [5]. A rate uncertainty of 50% is
applied for mis-identified lepton events due to the un-
certainty on the lepton misidentification probability [5].
A rate uncertainty of 6% due to the luminosity uncer-
tainty is applied to all events. The per-jet uncertainty
on the b-tagging efficiency is 8% for events with b par-
tons, 16% for events with c partons and 13% for events
with no heavy flavor [5]. Our analysis is weakly sensitive
to uncertainties in the expected total number of events
passing our selection, since it relies only on the shapes
of measured distributions. Uncertainties in the shapes
of kinematic distributions are propagated by varying the
amount of QCD radiation in simulated signal events and
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FIG. 2: Confidence intervals in the measured signal fraction
Smeas (along the x−axis) with 68% C.L., 95% C.L. and 99.7%
C.L., for a range of true signal fraction Strue values (along the
y−axis on the left) chosen in the simulated experiments. The
signal cross section ratio equivalent to Strue is shown on the
y−axis on the right. The intervals shown here are computed
for a Higgs boson mass of mH = 115 GeV/c2, and include
statistical and systematic uncertainties. The vertical dashed
line indicates the value of Smeas obtained from the data.

TABLE III: Upper limits at 95% C.L. on the ZH → `+`−bb̄
cross section, shown as a ratio to the SM cross section. The
column labelled “Expected” shows the median of the limits
obtained from simulated experiments containing no signal,
and the columns labelled “±1σ” show the range containing
68% of the expected limits.

mH [GeV/c2] −1σ Expected +1σ Observed
[σ/σSM ] [σ/σSM ] [σ/σSM ] [σ/σSM ]

100 6.0 8.7 12.4 7.0
105 6.0 8.7 12.9 6.5
110 7.5 11.3 16.8 7.6
115 8.3 12.1 18.2 8.2
120 9.3 13.5 20.0 9.0
125 13.2 18.3 27.1 13.2
130 17.1 24.2 35.7 17.7
135 21.8 31.0 44.8 22.9
140 31.0 44.3 65.4 32.0
145 42.8 61.6 89.9 43.1
150 73.7 104 153 71.3

the jet energy scale in simulated signal and background
events within their respective uncertainties [15].

We evaluate confidence intervals for a range of Higgs
masses between 100 GeV/c2 and 150 GeV/c2. We eval-
uate a priori 95% C.L. upper limits on the cross section
for the process pp̄ → ZH → `+`−bb̄. We express these
limits as a ratio with respect to the SM prediction. These
expected limits along with those observed in the data are
shown in Table III.
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In conclusion, we have performed a search for the SM
Higgs boson decaying to bb̄ produced in association with
a Z boson. This is the first analysis performed in this
channel with a matrix element method. The data show
no excess over expected non-Higgs backgrounds. We set
95% C.L. upper limits on the cross section of this pro-
cess for a range of Higgs boson masses. The limit at
mH = 115 GeV/c2 is 8.2 times greater than the SM pre-
diction. This result improves by a factor of 2 over the
previously published result in this channel [5]. We are
exploring further improvements in this technique by sep-
arating the leading-order and next-to-leading order con-
tributions to the signal and backgrounds, as well as the
use of matrix-element-based probabilities in conjunction
with other multivariate discriminants.
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